인공지능 활용 고용량 배터리 소재 역설계 기술
인공지능 활용 고용량 배터리 소재 역설계 기술
  • 이웃집과학자
  • 승인 2022.08.23 13:00
  • 조회수 1713
  • 댓글 0
이 기사를 공유합니다

KAIST 신소재공학과 홍승범 교수 연구팀이 기존 문헌에 발표된 실험값들을 추출하는 데이터 마이닝 과정과 이런 실험값들을 입력변수로 하는 다변수 선형회귀 모형을 기반으로 배터리 소재 역설계 머신러닝(기계학습) 모델을 수립했습니다.

 

인공지능은 고차원의 변수 공간에서 각 매개변수 간의 정량적인 상관관계를 신속하고 정확하게 추출할 수 있죠. 이를 공정-구조-물성 간의 상관관계를 기반으로 발전하는 신소재공학에 적용하면 신소재 개발 시간을 단축할 수 있는데요. 이런 이유로 많은 연구자가 인공지능을 신소재 개발에 활용하려는 노력이 늘어나는 추세입니다. 특히, 배터리 소재 개발에 인공지능을 활용하는 예가 가장 많은데, 주로 제1 원리 계산(양자화학에 기반한 계산법으로 계산 시 다른 경험적 수량을 전혀 사용하지 않음)과 머신러닝을 융합해 수많은 전극 소재 조합을 대량으로 스크리닝하는 기술 개발이 주를 이루고 있습니다.

 

그런데, 인공지능을 활용해서 새로운 배터리 소재를 탐색하고, 탐색한 소재를 합성 및 특성 평가에 있어 가장 큰 문제점은 데이터의 신뢰성과 양입니다. 제1 원리 계산으로 예측한 값들은 실험으로 검증이 돼야 하는데요. 실험데이터의 경우 실험실마다 편차가 있고, 중요한 공정변수들을 공개하지 않은 경우가 많아 인공지능이 학습할 수 있는 데이터의 크기가 한정적이라는 문제가 대두되고 있습니다.

 

연구팀은 배터리 양극재 원료조성, 1차 및 2차 소결 온도와 시간 등의 공정 변수와 컷오프 전위 및 충․방전률과 같은 측정 변수, 그리고 1차 및 2차 입자의 크기와 같은 구조 변수, 마지막으로 충․방전 용량과 같은 성능 변수 간의 상관관계를 정량적으로 수립했습니다. 이를 활용해 요구되는 에너지 용량에 맞는 합성 조건을 찾는 알고리즘을 개발하는데 성공했습니다.

3단계 디자인-소자 파이프라인 개략도. 논문에서 추출한 정보를 기반으로 모델을 수립하고, 모델 기반으로 공정-구조-물성 상관관계를 예측함. 이후 물성-구조-공정 역설계 모델을 수립하여, 요구되는 물성치를 가능케 하는 공정 및 구조 변수를 추출함. 출처 : KAIST
3단계 디자인-소자 파이프라인 개략도. 논문에서 추출한 정보를 기반으로 모델을 수립하고, 모델 기반으로 공정-구조-물성 상관관계를 예측함. 이후 물성-구조-공정 역설계 모델을 수립하여, 요구되는 물성치를 가능케 하는 공정 및 구조 변수를 추출함. 출처 : KAIST

홍 교수 연구팀은 고니켈 함량 양극재 관련 논문 415편 안에 발표된 주요 변수들을 추출했는데요. 그중 16% 정도의 정보가 기입되지 않음을 발견했으며, 머신러닝 기법 중에서 k-최근접 이웃 알고리즘(k-nearest neighbors (KNN)), 랜덤 포레스트(random forest (RF)), 연쇄등식을 이용한 다중대치(multiple imputations by chained equations (MICE))를 활용해 빠진 정보를 예측하여 기입했습니다. 그리고, 가장 신뢰도가 높은 MICE를 선택해 얻은 입력 데이터 셋을 기반으로 주어진 공정 및 측정 변수에 대해서 성능 변수를 예측하는 순방향 모델을 얻었습니다. 

 

이어서 입자 군집 최적화(particle swarm optimization, PSO) 알고리즘을 활용하여 주어진 성능 변수에 대응하는 공정 및 측정 변수를 추출하는 역방향 모델을 수립했습니다. 이 모델을 검증하기 위해 소재를 실제로 합성하여 타깃 용량인 200, 175, 150 mAh/g과 11% 정도의 오차를 보여 상당히 정확하게 역설계할 수 있음을 입증했는데요.

 

교신 저자인 홍승범 교수는 "인공지능을 활용해 대량의 논문 및 특허 내에 있는 공정-구조-물성 변수들을 자동으로 분류하고 실험값들을 추출해 각 변수 간의 다차원 상관관계를 기반으로 모델을 수립하는 것이 차세대 배터리 소재의 역설계의 핵심ˮ이라며 "향후 데이터 마이닝 기술, 머신러닝 기술 그리고 공정 자동화 기술을 융합하는 것이 미래의 신소재공학ˮ이라고 말했습니다.

이번 연구는 국제 학술지 `나노에너지(Nano Energy)'에 게재됐습니다.

논문명: Machine learning assisted synthesis of lithium-ion batteries cathode materials


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.

  • 충청남도 보령시 큰오랏3길
  • 법인명 : 이웃집과학자 주식회사
  • 제호 : 이웃집과학자
  • 청소년보호책임자 : 정병진
  • 등록번호 : 보령 바 00002
  • 등록일 : 2016-02-12
  • 발행일 : 2016-02-12
  • 발행인 : 김정환
  • 편집인 : 정병진
  • 이웃집과학자 모든 콘텐츠(영상,기사, 사진)는 저작권법의 보호를 받은바, 무단 전재와 복사, 배포 등을 금합니다.
  • Copyright © 2016-2024 이웃집과학자. All rights reserved. mail to contact@scientist.town
ND소프트