바이오경제를 이끌어가는 대사공학 30년 역사와 미래
바이오경제를 이끌어가는 대사공학 30년 역사와 미래
  • 이웃집과학자
  • 승인 2023.01.25 21:40
  • 조회수 1335
  • 댓글 0
이 기사를 공유합니다

KAIST 생명화학공학과 이상엽 특훈교수 연구팀이 지난 30년간 대사공학이 발전해온 역사를 정리했습니다. 그리고, 대사공학이 지속 가능한 발전에 어떻게 기여할 수 있는지 분석한 결과를 ‘지속 가능성과 건강을 위한 대사공학’ 논문으로 발표했습니다. 이번 논문은 셀(Cell) 誌가 발행하는 생명공학 분야 권위 리뷰 저널인 `생명공학 동향(Trends in Biotechnology)'의 40주년 특집호 온라인판에 게재됐습니다.

논문명 : Metabolic engineering for sustainability and health

 

대사공학은 1990년대 초반부터 본격적으로 연구되어 지난 30년간 괄목할 만한 발전을 이뤘는데요. 대사공학은 산업, 의료, 농업 및 환경 분야를 포함한 대부분의 생명공학 분야에서 적용됐습니다. 특히 미생물 공학에 중점을 뒀습니다. 다양한 발효 식품과 알코올음료 생산 등, 미생물을 사용한 물질 생산은 역사가 깁니다. 미생물은 동식물에 비해 빠르게 자랄 수 있어 실험에 드는 시간과 비용이 적게 듭니다. 또한 유전자 변형 생물(Genetically Modified Organism; GMO) 관련한 윤리 및 안정성 문제에서 동식물과 비교해 미생물의 유전공학은 상대적으로 자유로워 미생물에 관한 대사공학 연구가 광범위하게 시행됐습니다. 

 

지난 수십 년간 대사공학은 유용한 화학물질을 효율적으로 생산하고, 분해가 어려운 오염 물질을 분해할 수 있는 미생물 균주를 성공적으로 개발하는 등, 지속 가능한 발전을 위한 핵심적인 기술로서의 면모를 보였습니다. 특히, 현재까지 대사공학을 통해 개발한 미생물은 재생 가능한 바이오매스로부터 바이오 연료, 바이오 플라스틱, 산업용 대량 화학물질, 화장품 성분 및 의약품까지 수백 가지의 화학물질이 생산을 가능케 했습니다. 

 

또한, 대사공학은 미생물과 곤충을 포함한 동식물의 자연적 정화 과정에서 영감을 얻어 미생물 기반의 다양한 생물학적 정화 방법을 개발하기 위해서 이용됐습니다. 오염 물질과 독성 화학물질의 분해 경로를 조작함으로써 유출된 기름, 폐플라스틱, 살충제, 폐기된 항생제와 같은 물질을 더 높은 효율로 분해할 수 있도록 미생물을 개량할 수 있고, 이는 환경 보존을 위한 연구의 초석으로서 대사공학이 인류 건강에 기여하는 중요 예입니다. 이처럼 대사공학은 유엔이 발표한 지속가능발전목표(Sustainable Development Goals; SDG) 달성에 다방면으로 기여하고 있습니다. 

대사공학의 주요 발전에 대한 타임라인. 출처 : KAIST
대사공학의 주요 발전에 대한 타임라인. 출처 : KAIST

연구팀은 이번 연구에서 지난 30년간 대사 공학이 발전하며 어떻게 바이오 기반 화학물질의 지속 가능한 생산, 인류 건강 및 환경 문제까지 기여했는지에 대한 광범위한 개요를 제공했습니다. 특히 KAIST 이상엽 특훈교수는 대사공학의 태동기부터 연구를 수행해 왔는데요. 연구팀은 이번 논문을 통해 대사공학의 출현부터 인공지능을 활용한 최신 기술의 도입까지, 지난 수십 년 동안 어떻게 사회적, 산업적, 기술적 요구를 해결하기 위해 어떻게 발전해왔는지 정리하고, 최근 대사공학 연구가 어떻게 산업용 대량 화학물질 생산, 바이오 연료 생산, 천연물 생산, 생물학적 정화 분야에 기여하고 있는지 논의했습니다. 나아가 건강 및 환경 문제의 해결과 지속 가능한 바이오 기반의 화학산업을 정착시키기 위해 극복해야 할 대사공학의 문제점을 함께 제시했습니다. 

 

공동 제1 저자인 KAIST 생명화학공학과 김기배 박사과정생은 “기존의 석유화학 공정 기반의 화학물질 생산으로 인한 기후 위기와 화석 연료 고갈 문제를 고려했을 때 대사공학을 이용한 화학물질의 지속 가능한 생산 연구는 더욱 중요해지고 있다”라고 말했으며, 이상엽 특훈교수는 “이번 연구에서 대사공학의 역사를 돌이켜봄으로써 대사공학의 지속가능발전목표를 달성하기 위한 기여를 조명했으며, 우리 사회가 직면한 기후 위기, 환경 오염, 헬스케어, 식량 및 에너지 부족 문제에 대한 해결책으로서 대사공학이 점점 더 중요한 역할을 할 것”이라고 밝혔습니다.

 

#용어설명

1. 대사공학 (metabolic engineering)

대사 물질의 생산경로 조작을 통해 목적 대사 물질의 생산을 최적화하는 기술을 의미한다. 대사공학은 생산경로 유전자의 과발현, 경쟁 경로 유전자의 제거, 또는 외래 유전자의 도입 등을 통해 미생물이 가지고 있는 고유의 대사 경로를 변형시킴으로써, 원하는 산물의 생산을 극대화하고자 하며, 이 과정에서 컴퓨터 모델링을 비롯한 다양한 공학 도구들이 사용된다. 미생물을 이용해 생산 가능한 다양한 화학물질들은 에너지, 식품, 의약, 화장품, 화학산업 등에 널리 활용되고 있다.

2. 시스템 대사공학 (systems metabolic engineering)

기존 대사공학적 기법과 시스템생물학, 합성생물학 및 진화공학 기법 등과의 융합을 통해 체계적으로 미생물 대사를 재설계하여 목표 화학물질의 대량생산을 가능하게 하는 학문이다. 이 기술은 2016년 세계경제포럼에서 ‘2016년 10대 떠오르는 기술’에 선정된 바 있다.


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.

  • 충청남도 보령시 큰오랏3길
  • 법인명 : 이웃집과학자 주식회사
  • 제호 : 이웃집과학자
  • 청소년보호책임자 : 정병진
  • 등록번호 : 보령 바 00002
  • 등록일 : 2016-02-12
  • 발행일 : 2016-02-12
  • 발행인 : 김정환
  • 편집인 : 정병진
  • 이웃집과학자 모든 콘텐츠(영상,기사, 사진)는 저작권법의 보호를 받은바, 무단 전재와 복사, 배포 등을 금합니다.
  • Copyright © 2016-2024 이웃집과학자. All rights reserved. mail to contact@scientist.town
ND소프트