맞춤형 항암제의 효능을 예측 할 수 있다
맞춤형 항암제의 효능을 예측 할 수 있다
  • 이웃집과학자
  • 승인 2022.12.20 19:30
  • 조회수 2860
  • 댓글 0
이 기사를 공유합니다

인공지능 이미지. 본문과 관련없음. 출처: Fotolia
인공지능 이미지. 본문과 관련없음. 출처: Fotolia

 똑같은 암을 앓는 환자라도 항암제 효능은 다르죠. 개인별 유전변이 등에 따라 항암제의 반응성이 다르게 나타나기 때문인데요. 이런 환자별 결과를 미리 알려주는 인공지능(AI) 기술이 개발됐습니다.

 

UNIST 바이오메디컬공학과 이세민 교수팀은 고려대 정원기 교수팀, 한양대 서지원 교수팀과 공동으로 ‘다중 오믹스[1] 데이터 기반의 환자 맞춤형 항암제 반응성 예측을 위한 기계학습 모델’을 개발했습니다. 연구진은 대규모 항암제 반응성 데이터와 다중 오믹스 데이터를 활용해 기존의 항암제 반응성 예측 모델보다 훨씬 우수한 성능을 얻었습니다. 네트워크 임베딩 기술과 최신 딥러닝 모델이 적용된 덕분입니다. 

[1] 다중 오믹스(Multi-Omics): 유전체(Genome), 전사체(Transcriptome), 단백체(Proteome), 대사체(Metabolome), 후성유전체(Epigenome), 지질체(Lipodome) 등 다양한 분자 수준에서 생성된 여러 데이터를 동시 분석해 종합적으로 질병을 진단하고 예측하는 기술

 

암은 대표적인 유전체(Genome) 관련 질병, 즉 ‘게놈 병’인데요. 사람마다 가진 ‘생명의 설계도’인 유전체에 계속 변이가 축적되면서 질병이 발생한다는 뜻입니다. 암 조직에서는 유전자 발현[2] 양상도 정상조직과는 달라집니다. 이러한 유전변이와 유전자 발현 프로파일(Profile)은 동일 암종의 환자 간에도 상당한 차이를 보이는데, 이는 환자 특이적 항암제 반응성과 유의미한 연관성이 있다고 알려져 있습니다.

[2] 유전자 발현(遺傳子發現, gene expression): DNA를 구성하는 유전 정보, 즉 유전자에 의해 생물을 구성하는 다양한 단백질이 형성되는 과정

 

이에 따라, 최근에는 암 환자 특이적 유전변이나 유전자 발현 양상 등을 아우르는 다중 오믹스 데이터를 기반으로 ‘환자 맞춤형 항암제 반응성 예측 모델’을 개발하는 시도가 많습니다. 그러나 이런 모델 학습을 위한 생물학 데이터는 종류와 인자가 많은 데 비해 샘플 수는 부족해 기계학습 모델의 정확도를 높이는 데 한계가 있는 상황입니다.

 

연구진은 이를 극복하기 위해 ‘네트워크 임베딩 기술’을 적용해 다차원 데이터 간의 상관관계를 효과적으로 반영했습니다. 먼저 암세포에서 파생된 세포주[3]와 항암제, 유전자를 ‘노드(node, 연결점)’로 삼았습니다. 다음으로 각 노드를 연결해 엣지(edge, 연결선)를 만들었는데요. 엣지를 통해서는 항암제 반응성(세포주-항암제)이나 유전자 변이(세포주-유전자), 단백질 상호작용(유전자-유전자)에 대한 정보를 얻을 수 있습니다.

[3] 세포주(Cell line): 연구 목적으로 배양되어 반복적인 증식을 통해 형질의 유지가 가능한 세포 집단

 

노드와 엣지로 형성된 네트워크 세트의 상관관계를 반영한 ‘임베딩 벡터[4]’의 추출이 이번 연구의 핵심인데요. 임베딩 벡터를 이용하면 각 노드의 대푯값을 알 수 있어 고차원적인 데이터도 효과적으로 다룰 수 있기 때문입니다. 연구진은 임베딩 벡터를 AI 기법인 심층신경망[5]으로 학습시켜 환자맞춤형으로 항암제 효능을 도출했습니다.

[4] 임베딩 벡터(enbedding vector): 네트워크 데이터 세트의 노드들 각각을 일정한 크기의 벡터들로 표현하는 것이며, 네트워크 내부 구조를 이해하기 위해 사용한다. 서로 연결된 노드들의 임베딩 벡터 간에 유사도가 높아지도록 학습해 노드 간의 관련성을 학습시킨다

[5] 심층신경망(Deep Neural Network): 일정 수준의 복잡성을 가진 신경망, 즉 두 개 이상의 층을 가진 신경망. 복잡한 방법으로 데이터를 처리하기 위해 정교한 수학 모델링을 사용한다

 

제1저자인 고려대 이강근 박사는 “저항성 위주로 편향된 반응성 데이터를 보완하기 위한 다양한 인공지능 기법을 적용했다”며 “새 모델의 항암제 반응성 예측 성능은 기존 모델보다 크게 향상된 93% 정도의 정확도로 나타났다”고 설명했습니다. 공동 제1저자인 한양대 조동빈 연구원은 “고차원 다중 오믹스 데이터에 존재하는 요소끼리 상호작용을 효과적으로 추출하는 네트워크 임베딩 기술을 비롯한 심층신경망 등을 통해 우수한 성능을 달성했다”고 전했습니다. 

 

연구결과는 생명정보학 분야 학술지인 ‘브리핑스 인 바이오인포메틱스(Briefings in Bioinformatics)’에 공개됐습니다. 

논문명: RAMP: response-aware multi-task learning with contrastive regularization for cancer drug response prediction


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.

  • 충청남도 보령시 큰오랏3길
  • 법인명 : 이웃집과학자 주식회사
  • 제호 : 이웃집과학자
  • 청소년보호책임자 : 정병진
  • 등록번호 : 보령 바 00002
  • 등록일 : 2016-02-12
  • 발행일 : 2016-02-12
  • 발행인 : 김정환
  • 편집인 : 정병진
  • 이웃집과학자 모든 콘텐츠(영상,기사, 사진)는 저작권법의 보호를 받은바, 무단 전재와 복사, 배포 등을 금합니다.
  • Copyright © 2016-2024 이웃집과학자. All rights reserved. mail to contact@scientist.town
ND소프트