KAIST, 10배 이상 생체신호 정밀 측정 ‘SUPPORT’개발
KAIST, 10배 이상 생체신호 정밀 측정 ‘SUPPORT’개발
  • 함예솔
  • 승인 2023.09.20 14:18
  • 조회수 2682
  • 댓글 0
이 기사를 공유합니다

최근 유전공학 기술의 발전으로 형광현미경을 활용해 살아있는 생체조직 내 신호를 형광신호로 변환하여 연속적으로 촬영하고 측정하는 기술들이 개발되어 활용되고 있죠. 그러나, 생체조직에서 방출되는 형광신호가 미약하기 때문에 빠르게 변화하는 신경세포의 전기신호 등의 신호를 측정할 경우, 매우 낮은 신호대잡음비를 가지게 되어 정밀한 측정이 어려워지게 됩니다. 

형광신호 : 특정 생체 신호의 변화에 비례하여 빛(형광)의 밝기가 변화

 

KAIST는 전기및전자공학부 윤영규 교수 연구팀이 기존 기술 대비 10배 이상 정밀하게 생체 형광 신호 측정을 가능하게 하는 인공지능(AI) 영상 분석 기술을 개발했다고 20일 밝혔는데요. 

 

윤 교수 연구팀은 별도의 학습 데이터 없이, 낮은 신호대잡음비를 가지는 형광현미경 영상으로부터 데이터의 통계적 분포를 스스로 학습해 영상의 신호대잡음비를 10배 이상 높여 생체신호를 정밀 측정할 수 있는 기술을 개발했습니다. 이를 활용하면 각종 생체 신호의 측정 정밀도가 크게 향상될 수 있어 생명과학 연구 전반과 뇌 질환 치료제 개발에 폭넓게 활용될 수 있을 것으로 기대됩니다. 

 

윤 교수는 “이 기술이 다양한 뇌과학, 생명과학 연구에 도움이 되길 바라는 마음을 담아 ‘서포트(SUPPORT, Statistically Unbiased Prediction utilizing sPatiOtempoRal information in imaging daTa)라는 이름을 붙였다”며, “다양한 형광 이미징 장비를 활용하는 연구자들이 별도의 학습 데이터 없이도 쉽게 활용가능한 기술로, 새로운 생명현상 규명에 폭넓게 활용될 수 있을 것”이라고 말했습니다.

SUPPORT 기술의 개념도: (a) 영상 내 각 픽셀별로 현재 프레임 내의 주변 픽셀 정보와 인접한 프레임 정보를 활용하여 인공신경망이 별도의 학습 데이터 없이 노이즈를 제거. (b) 설계된 인공신경망의 임펄스 응답. 출처 : KAIST
SUPPORT 기술의 개념도: (a) 영상 내 각 픽셀별로 현재 프레임 내의 주변 픽셀 정보와 인접한 프레임 정보를 활용하여 인공신경망이 별도의 학습 데이터 없이 노이즈를 제거. (b) 설계된 인공신경망의 임펄스 응답. 출처 : KAIST

공동 제1 저자인 엄민호 연구원은 "서포트(SUPPORT) 기술을 통해 관측이 어려웠던 생체 신호의 빠른 변화를 정밀하게 측정하는 것에 성공하였고, 특히 밀리초 단위로 변하는 신경세포의 활동전위를 광학적으로 정밀하게 측정할 수 있어 뇌과학 연구에 매우 유용할 것이다”라고 하였으며, 공동 제1 저자인 한승재 연구원은 “서포트 기술은 형광현미경 영상 내 생체 신호의 정밀 측정을 위해 개발됐지만, 일반적인 타임랩스 영상의 품질을 높이기 위해서도 폭넓게 활용가능하다”라고 말했습니다.

SUPPORT를 활용한 초정밀 신경세포 전압 측정: (상) 원 형광 이미지에서는 낮은 신호대잡음비로 인해 신경세포의 활동전위 관찰이 불가능. (하) SUPPORT를 이용해 신호대잡음비를 높이면, 각 신경세포의 활동전위를 정밀하게 관찰할 수 있음. 출처 : KAIST
SUPPORT를 활용한 초정밀 신경세포 전압 측정: (상) 원 형광 이미지에서는 낮은 신호대잡음비로 인해 신경세포의 활동전위 관찰이 불가능. (하) SUPPORT를 이용해 신호대잡음비를 높이면, 각 신경세포의 활동전위를 정밀하게 관찰할 수 있음. 출처 : KAIST

이 기술은 KAIST 전기및전자공학부 윤영규 교수팀의 주도하에 KAIST 신소재공학과(장재범 교수), KAIST 의과학대학원(김필한 교수), 충남대학교, 서울대학교, 하버드대학(Harvard University), 보스턴대학(Boston University), 앨런 연구소(Allen Institute), 웨스트레이크대학(Westlake University) 연구진들과 다국적, 다학제간 협력을 통해서 개발됐습니다. 

 

연구결과는 국제 학술지 `네이처 메소드(Nature Methods)'에 9월 19일 자로 온라인 게재 및 10월호 표지 논문으로 선정됐습니다.

논문명 : Statistically unbiased prediction enables accurate denoising of voltage imaging data


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.

  • 충청남도 보령시 큰오랏3길
  • 법인명 : 이웃집과학자 주식회사
  • 제호 : 이웃집과학자
  • 청소년보호책임자 : 정병진
  • 등록번호 : 보령 바 00002
  • 등록일 : 2016-02-12
  • 발행일 : 2016-02-12
  • 발행인 : 김정환
  • 편집인 : 정병진
  • 이웃집과학자 모든 콘텐츠(영상,기사, 사진)는 저작권법의 보호를 받은바, 무단 전재와 복사, 배포 등을 금합니다.
  • Copyright © 2016-2024 이웃집과학자. All rights reserved. mail to contact@scientist.town
ND소프트